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Discrete analogoues of multivariate simplex splines are introduced. Their study
yields a subdivision scheme for simplex splines. © 1992 Academic Press, Inc.

1. INTRODUCTION

A variety of techniques to facilitate fast graphical display of curves and
surfaces for interactive CAGD purposes have been developed, in the past
years. Many of these are commonly referred to as subdivision algorithms
[2].

In this paper we propose a method for subdividing simplex splines, i.e.,
splines that can be defined over non-regular grid partitions. There is a
relatively exhaustive theory of multivariate simplex splines (or shortly
B-splines) [6]. Due to some favorable properties, similar to those in the
univariate case, the B-splines are suitable, in principle, for application, e.g.,
in the Finite Element Method or in Computer Aided Geometric Design. On
the other hand, their computational properties seem to be very restrictive
compared to other available methods. In spite of the existence of a number
of recurrence relations to facilitate the numerical manipulation of B-splines,
these are often computationally expensive in sharp contrast with the
univariate case. Therefore, there naturally arises a need for a subdivision­
like algorithm for simplex B-splines. Some basic ideas on subdivision of
B-splines have been described in [1,12,14, 15], all based on a geometric
interpretation of B-splines. Here, we suggest a different approach. It is
based on the notion of discrete simplex splines, which is proven to be an
extension of the ideas underlying the definitions of discrete cube splines,
also called box splines, and discrete cone splines [3, 7]. The notion of the
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discrete B-splines will turn out to be useful for the purpose of subdividing
their continuous counterparts.

The paper consists of the following parts. We start with a brief review of
basic facts about discrete cube splines and we give some extensions needed
for later purposes. Then the discrete B-splines are defined and some of their
properties are derived. Sections 4 and 5 deal with an algorithm for sub­
dividing B-splines. We finish the paper with a discussion.

2. DISCRETE CUBE AND CONE SPLINES

Let X:= {x 1, ..., x n
}, Xi E IRs \ {O }, and n ?: s. In the following we assume

that the linear span of X, denoted by <X), is IRS. The cube spline B( ·1 X)
and the cone spline T(·I X) are defined by, respectively,

and

f B(xIX)j(x)dx=f j(Xv)dv,
R' [0, I In

f T(xIX)j(x) dx= f j(Xv) dv,
~s [R~

(2J)

(2.2)

where Xv := XlVI + ... + xnvn, which must hold for any continuous and
locally supported function f The latter definition makes sense if 0 ¢ [X],
[XJ the convex hull of X.

Next, let H:=diag(hl, ...,hn ), hi=:Pi 1
, PiE!\!, be a diagonal scaling

matrix. The discrete version bH( ·1 X) of the cube spline is defined as [3,

L bH(xIX)j(x)=det(H) L j(XHv), (2,3)
v E lL fl

O~Vi<Pi

which should hold for any discrete function j vanishing in all but a finite
number of points in .5l'H(X), Here .5l'H(X) := {x E WI x = XHv, v E zn}, and
XHv := xlh l VI + ... + xnhnVn. Similarly, the discrete COne spline tH( ·1 X)
can be defined by the relation [7J

L tH(xIX)j(x) = det(H) L j(XHv),
XE2H(X) VEl'",

which is, under the condition 0 ¢ [XJ, to be satisfied for an j vanishing in
all but a finite number of points in .5l'H(X),

The properties and structure of discrete cube splines and cone splines
were intensively studied, e.g., in [9-11]. It has been shown in [3, 7J, that
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the discrete cube splines converge in the pointwise sense to the continuous
cube splines, if Pi ~ 00. It is important to remark that the conditions on X
and H under which the convergence was proved are only sufficient but not
necessary. As a consequence, the results in [3,7J do not imply that the
discrete cube spline converges to its continuous counterpart for all Xc lL S

•

It turns out, however, that the convergence is indeed guaranteed, as stated
in the next lemma.

We first need the following notation. Let Xc lL S
• We call a set

YH={yiJ,···,y~}clR' a basis for £'H(X) if <YH)=II;F and £,(YH):=
{x E U;n x = YHfl, fl EllS} = £'H(X), where YHfl := yiJfll + ... + y~fls.

Note that in general the basis of £'H(X) is not uniquely determined. All
bases of £'H(X) have the same (nonzero) value of Idet(YH)I, however. For
instance, if s = 2, X = {(I, 0), (0, 1), (1,1)} and H = diag(l, 1,2/3), then
both sets YiJ= {(1/3, 0), (0, 1/3)} and Y~= {(1/3, 0), (113, 1/3)} form a
basis of £'H(X) and

Idet(YiJ)1 = Idet(Y~)I.

LEMMA 2.1. Let Xc lLSand let YH be a basis for £'H(X). Then there is
a constant y depending on X and s such that

IB(x IX) -Idet( YH)I- 1 bH(xl X)I <yiIHII,

for all XE £'H(X), where IIHII:= max{h l , ..., hn} and £'(YH) := {XE WI
X= YHV, VElLn}.

We omit the proof here, since it can be done following the same lines as
the proof of the convergence result in [7]. Some remarks on the lemma are
in order:

- If YHcXH:={xlhr. ...,xnhn}, then exactly the result in [7J is
reproduced.

- If X ¢ lL s
, then the necessary and sufficient condition for the con­

vergence of the discrete cube spline is that there is a set YH = {yiJ, ..., y~}
with det(YH)cfO forming a basis for £'H(X), or equivalently, there must
exist a set Y = {yl, ..., yS} which forms a basis for £'(X).

For the rest of this paper we assume that Xc lL S and H = diag(h, ..., h),
where h~l =: pE N. Accordingly, we modify the notational convention:
instead of H we employ the lower case h.

A simple consequence of the definitions (2.1), (2.3) is the following
lemma.

LEMMA 2.2. Let h;-l = PiE N, i= 1, 2. Then

bh1h2(X IX) = h~ L, Dh,(x - Xh 1hzv IX),
0::;:,;;; Vi < P2

(2.4 )
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if x E £"h,(X)
otherwise.

Formula (2.4) suggests a recipe for subdividing any cube spline with
Xc ZS, There is, however, a computationally more convenient way of
calculating bh1h2 , which can be considered as a generalization of the line
average algorithm [3, 7, 8].

COROLLARY 2.1. bh1h2 can be calculated for all x E £"hlh2(X) by the
following algorithm.

L b~l(xIX) :=Dh,(xIX),

2 h i ( IX) '-h ",pz-I bi- I( -'h h ilX) '-1. h, X '-2"--j~O hI X JI2X, ,l-", ...,n,
3, bhlh2(xIX)=b~l(xIX).

Since in the rest of the paper we will be concerned with discrete cone
splines rather than with cube splines, we remark that results similar
to those in Lemmas 2.1, 2.2, and Corollary 2.1 can be obtained without
difficulties also for discrete cone splines.

3. DISCRETE B-SPLINES

For the remainder of the paper we reserve the symbol X for the set
X:= {XO, ..•, xn}, n~s, where Xi are points in IRs, sometimes also called
knots. We recall the distributional definition of the multivariate B-spline
M( ·1 X) associated with the knot-set X, which requires the relation

f M(xIX)f(x)dx=n1f f(voxo+",+vnxn)dvl···dvn, (3,1)
R' S"

to be satisfied for allfE C(IRS), where sn := {(vo, .." vn)IL7~o Vi = 1, Vi ~ O}
is the standard n-simplex.

The next well known identity, first derived by Dahmen [4, 5J, relates
B-splines to cone splines,

n

M(xl X) = n! L (_l)i T(x-xii Xi),
i~O

(3.2)

h X i . {i ° i i-I i+lin i}' 0 h'h .were .= x - x , ..., x - x , x - x, ..., x - x ,I = , ..., n, w IC IS

valid under the assumption that

all knots in X are distinct and 0 ¢ [XiJ, i = 0, .." n. (3.3 )
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Note, that if all knots in X are distinct, then the condition °¢ [Xi],
i = 0, ..., n, is actually a restriction on the ordering of X rather than on the
values of the knots. In case vol, [X] = 0, the s-dimensional volume of [X],
the above identity is meaningful only in the distributional sense. From now
on we assume vol,[X] ~o, however. Since we will give a discrete version
of (3.2), we include a short proof, different from the one in [4,5].

Proof of (3.2). Define the sets

C~ := {(va' , vn) E IR n
I 1 I,to Vi = I, VI ~ 0, , Vn~°},

C7:={(Vo, ,v,.)ElRnlll.I. vi=l, Vo<o, ,v, I' <0,
l~O

v, + I ~ 0, ..., v" ~°}, i = 1, ..., n - 1, (3.4 )

C~ :={(vo, ..., V,,)EIRn..-tto V,= 1, vo<O, ..., V,,_I <o}.
It can be immediately seen that

s" =C~\C7\'" \C;;, (3.5)

where the difference operation "\" is defined such that whenever A, B, C
are three sets, then A\B\C:=A\(B\C). Applying (3.5) to (3.1) yields

LM(xIX)f(x) dx

Employing the definition of the sets C7, (2.2), (3.3) and an elementary
calculation readily finishes the proof. I

In the following we give a definition of the multivariate discrete
B-splines. To that end let sn,h be the discrete standard n-simp/ex,

S",h:= {(va' ..., Vn)E :i'':+ tt hv,= I},
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2'h(X) :={XEIWIX=XhV, VEZn
+

1
, ito hVi=O},

9h(X) := {XE [RSlx =Xhv, vEzn+ 1, ito hvi= I}.

363

DEFINITION 3.1. The multivariate discrete simplex B-spline mh(·1 X) is a
function defined on 9h(X) satisfying

XE.51;(X) v E sn,h

for all locally supported discrete functions f # sn,h denotes the cardinality
of sn,h, which is

#sn,h = (n +nh~l)= (n: P). (3.7)

The following identity which is a consequence of (3.6) could be used to
give an equivalent definition of discrete B-splines,

X E 9h(X). (3.8 )

This implies that mh(·1 X) is '!- nonnegative function with local support
contained in [X] n 9h(X). Moreover, it is normalized such that

L: mh(xIX)= 1.
XE.5f'h(X)

From now on we assume Xc ZS. The next identity is a discrete analog of
(3.2).

THEOREM 3.1. Let X satisfy (3.3) and let ~o :=0, ~i :=xi_XO + ... +
Xi - Xi ~ 1, i = 1, ..., n. Then

n

mh(xIX)=I(n,h) L (-1rth(X-xi_h~iIXi), (3.9)
i=O

for all x E 9h(X), where l(n, h) := h~n( # sn,h)~l.

Proof Note first, that both sides of (3.9) are defined on the same lattice
9h(X). To see this, observe that both cone splines th(·1 Xi) and
th( . - h~i 1Xi), i = 0, ..., n, are defined on 2j,(Xi), since h~i E 2'h(Xi). This
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i = 1, ..., n - 1,

implies that t,,( . - Xi - h.;i IXi) is defined on 9'1,( X). In analogy to (3.4) we
define sets C7'" as

C3'" :={(Vo, , Vn)EZhllito hvi = I, VI ~o, ..., Vn~O},

C7·":={(Vo, ,Vn)Ezn+'1 i hvi =l, vo<O,···,l'i I' <0,
,~o

Vi t- 1~ 0, ,.., Vn ~°},
C7.,h :={(Vo, ..., Vn)Ezn+llitohVi= 1, vo<O, ... , Vn- 1 <o}.

Since sn," = cn,,,\C"'" \ ... \Cn,h we can writeo 1 n ,

L m,,(xIX)f(x)
xE .'/'h(X)

=(#S",")-I L f(Xhv)
v E sn,h

"=(#sn,")-I L (_I)i L f(Xhv)
,. --,0 l' E C"'7,h

n

=(#sn,")-l L (_I)i L f(x i +h';i-h(vo+l)(xi -xo)_ ...
;--=0 vec'/,h

By the following transformation of variables,

Ai: = ( - (vo+ 1), ..., - (Vi _ 1 + 1), Vi + I' ... , Vn),

the last term of the above equation equals

"
(#sn,") 1 L (-If L f(xi+h';i+Xih)'i)

i= 0 ;.iE iI!..n
l

i=O, ..., n,

n

= (#sn.,,) 1 L (-lfh-- n I t,,(x-xi-h~iIXi)f(x)

L (l(n,h) I. (-l)ith(X-Xi-h~iIXi))f(X),
<E·Y"h(X) i~O

which finishes the proof. I
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The following assertion concerns the generating function of mh(·1
Observe first, that if Z= (Zj, ..., Zs)ECS, za :=Z~i ",z~' for :x = (IXl> ... , as)
and X:= {xl, ..., x n

}, then the generating function th(zIX) of th(xIX) is

fh(zIX) :=hs L _zXth(x/X)= TIn ;In_zhXJ)" (3.
XE ..'ifh(X) l~ 1

This has been shown in [11] for the case h = 1.

LEMMA 3.1. Let X satisfy (3.3). Then the generating function mh of mh
is a divided difference of zP+n, namely

Proof From (3.10) it follows that the generating function of
th(x - Xi - h~i 1Xi) is

[I n .. (1- h1xi-xJI)'
l=O.l# I Z

where

{

i j

I
i ·1 x -x,x -Xl := . .

Xl_Xl,

Hence, based on the identity (3.9) we obtain

jf j < i

if j> i.

mh(Z 1 X) = hS L ZXmh(x I X)
x E 9"h(X)

n . hnzx' + h¢'
= l(n, h) L (-1)' [I n .. (1 _ zhlxi - Xii)

I~O ]~O,l#l

Recalling the familiar jdentity for the univariate divided differences,

and (3.7) readily finishes the proof. I
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Note, that this lemma brings in mind the well known fact that the
Fourier transform of a (continuous) B-spline is a divided difference of an
exponential function (cf. [6]). There is another property of continuous
B-splines, which is retained in the discrete case. Let AE TZS be such that for
every k E 2;/XA),

# ( {x E 2;.(X) IAx = k} " {Xv, VE 1R':r}) < 00,

then

~A(th('IX))(k):= L th(xIX)=th(kIXA).
Ax~k

x E 2"h(X)

That is, the discrete Radon transform of the discrete multivariate cone
spline is a denumerant, i.e., a univariate discrete cone spline. The proof of
this fact, in a somewhat modified form, can be found in [11]. This result
can easily be extended to give

th(k-XiA-h~iAIXiA)= L th(X-Xi_h~iIXi),

)..x=k
XE9'h(X)

Hence, under the assumption (3.3), Theorem 3.11eads to

kE Yj;(XA).

n

L mh(xIX)= L l(n, h) L (-1)ith(X-Xi_h~iIXi)
)..x=k )..x=k i=O

XE9'h(X) XE9'h(X)

n

=l(n,h) L (_1)i L th(X-Xi_h~jIXj)

i=O ).x=k
XE9'h(X)

n

=l(n,h) L (-1)ith(k-XiA-h~iIXiA)

i=O

which proves

LEMMA 3.2. ~}.(mh(·IX))(k)=mk(kIXA), that is, the discrete Radon
transform of the multivariate B-spline is a univariate discrete B-spline.

Notice, that the same is true in the continuous case [13,6]. Next we give
a discrete analogue of another interesting property of the continuous
B-splines, namely we show that the restriction of an (s + 1)-variate discrete
cone spline to an s-dimensional hyperplane is an s-variate discrete B-spline.
In particular, let Xi := (Xi, 1), X:= {XO, ..., xn

}, x := (x, 1), then



LEMMA 3.3.

for all x E 9;,(X).
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(3.1 )

Proof To see that the right hand side of (3.11) is defined for all
x E 9;,(X), it is sufficient to observe that the restriction of 2"h{X) to the
hyperplane X s + 1 = 1 equals

{(X, l)lx=Xhv, it hv i = 1, VEZ
n

+
1}= {(x, 1)lxE9;,(X)}.

The proof of (3.11) is based on the identity (3.8). Namely,

l(n, h) th(xIX) = l(n, h) hn # {V E Z ':+ 1IXhv = x}

=(#sn,h)~l #{VEZ:+1IXhV=X, ito hV i =l}

= (#sn,h)~l # {V Esn,hl Xhv = x} = mh(xl X). I

We now prove the following recurrence relation relating higher-order
discrete B-splines to lower-order ones.

LEMMA 3.4. If n > s, then for every j E {O, ... , n },

Proof On account of (3.8), we obtain

Next we state a convergence theorem for discrete B-splines.
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THEOREM 3.2. Let Y h be a basis for 2;,(X). Then there is a constant y
depending on X and s, such that

for all XE~(X).

Proof Let Yh be a basis for 2;,(X) and Yh a basis for 2 h(X). Then it
is easy to show that

Moreover, it is known that

M(xIX)=n! T(xIX),

a continuous version of (3.11). The assertion follows now in a
straightforward way from (3.11), the convergence result for discrete cone
splines, and the simple fact that

lim l(n,h)=n!. I
h~O

4. AN ALGORITHM FOR SUBDIVIDING SIMPLEX B-SPLINES

In this section we propose a method for subdividing simplex B-splines,
based on Lemma 3.3.

LEMMA 4.1. Let n ~ s. Consider the mesh 9{lh(X), which is a restriction of
..%(X), defined as

9fh(X):= {XE..%(X), Xs +l E {1-nh, ..., I-h, I}},

where Xs +l is the (s+l)st coordinate ofx. Then the control net {th(xIX),
x E 9fh(X)} is sufficient for subdividing the cone spline T(x 1X) along the
hyperplane x s + 1 = 1.

Proof Employing well known facts about cube and cone splines (cf.
[7]) it can be shown that

T(xIX)= L th(aIX)B(x-aIXh),
X".5I'h(X)

Since the length of the support of B(·I Xh) in the direction of xs + 1 is
h(n + 1), the cube splines B(x - aIXh) do not vanish for xs + 1 = 1 only if
aE 9fh (X). Thus, T(x IX) is for Xs+ 1 = 1 completely determined by the net
{th(x IX), x E 9fh(X)}. I
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FIG. 4.2. A discrete quadratic B-spline mh( -I X), X = {(O, 0), (0, 1), (0, 2), (0, 3), (2, 1)}.
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Lemma 4.1 asserts that in order to have a sufficient information on the
cone spline along the hyperplane xs + j = 1 it is necessary to keep track of
n+ 1 "layers" of the subdivision net only, namely the layers corresponding
to xs + j = 1-nh, ..., xs + j = 1-h, xs+ j = 1. In the following let hi' i= 1, 2,
be constants such that h; j = Pi EN. Moreover, in analogy to Corollary 2.1,
let thj(x IX) be a function defined for all x E Sf;,lhlX) as

if XESf;,,(X)

otherwise.

Next we present an algorithm for refining the net {thJx IX), x E 9fh,(X)}.
o - - - -Algorithm. 1. Set th1(X IX) := th1(X IX), for an XE Sf;"h2(X) such that,

Xs+ j E {1 - ((n + 1) P2 - 1) hj h2, ..., 1- h jh2, 1}.

2. Set thJx IX) := h2L.f~(/ th~ j(x - jh 1 h2x i IX), for all x E Sf;"h2(X)
such that, XS+IE{1-((n+1-i)p2-1+i)hjh2, ...,1-hlh2,1}, i=l, ...,
n+ 1.

3. th,h2(X IX) = t~,+ l(X IX), for all x ESf;"h2(X) such that, xs+ 1 E
{1-nh 1h2, ..., 1-h j h2, 1}.

4. mh1h2(x IX) = l(n, h) th,h2(X IX), x E 9},(X).

Observe, that in order to compute the discrete function thJx IX) for
those x for which xs+jE{1-((n+1)P2-1)hjh2, ...,1-hjh2,1}, only
the values of the control net {th,(x IX), x E 9fhJX)} are needed, which is
accordance with Lemma 4.1. At the end of the algorithm we are left with
the refined control net {th1hix IX), xE 9fh,hlX)}, which represents a suf­
ficient information for a next subdivision step. The fourth step of the algo­
rithm can be performed in order to obtain the desired values of the discrete
B-spline mh1h2(x IX). It should be stressed, however, that this algorithm
does not make it possible to calculate mhlh2 directly from mhl = thJx IX),
x E 9},,(X) without knowing the other layers of th/x IX), namely for
xs+ j E {1-nh 1 , ••• , I-hd.

Figures 4.1 and 4.2 present some examples of discrete B-splines for
different values of h. The evaluation has been performed on the basis of the
above algorithm.

5. ZIG-ZAGGING OF THE CONTROL NET

Figures 4.1 and 4.2 confirm the convergence of discrete simplex splines to
the corresponding continuous simplex splines. However, it can be seen that
the subdivision nets are not visually pleasing in the sense that they contain
undesired oscillations. We call this negative phenomenon of the control net

640170/3-8
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zig-zagging. In the case of cube splines, this phenomenon is a consequence
of well known facts about discrete cube splines. In particular, it follows
from the results in [9J that a discrete cube spline is not a piecewise polyno­
mial function unless the direction set X is unimodular. In the case when X
is not unimodular, pieces of the discrete cube spline are known to contain
oscillating terms satisfying certain partial difference equations.

Next we describe a possible remedy for removing the zig-zagging from
the subdivision net. For the sake of brevity we restrict ourselves to the case
of cube splines. The results apply in a straightforward manner to discrete
cone splines and thl's, by Theorem 3.1 and Lemma 3.3, also to discrete
simplex splines. The idea is based on the identity

Bh(xi X) = h- s L bh(y I X) B(h-I(x - y) 1 X),
ye 2j,(X)

XE2!,(X), (5.1)

where Bh( ·1 X), h -I E N, denotes the restriction of B(·I X) to £'h(X), i.e.,

XE 2!,(X).

This is an immediate consequence of the well known fact [3,7J

and

B(xjX)= L bh(yIX) B(x- YIXh),
ye 2j,(X)

XE IRs,

X E IRS.

Hence, from (5.1) it follows that exact values of B(·1 X) on the fine grid
£'h(X) can be obtained as a discrete convolution of the corresponding dis­
crete cube spline bh( ·1 X) on the fine grid with the "discretized" cube spline
B(·I X) on the coarsest grid £'(X). This suggests a refinement strategy in
two stages. In the first stage the discrete cube splines (or a linear combina­
tion of discrete cube splines) are calculated as in Section 2. In the second
stage, the refined control net is "smoothed out" by (5.1). In this way the
subdivision gives rise to exact values of the cube spline surfaces. That
means that the subdivision net is actually a piecewise linear interpolant of
the limit surface and thus it is converging quadratically to it. Note, that in
general the convergence of the control net corresponding to bh is linear
only.

The above method has also some drawbacks, however. First, exact
values of the cube splines are needed. This is not a serious drawback, since
only values on the coarsest grid must be evaluated, their number being, for
typical cube splines of low degree, relatively small. These values can be
computed, e.g., by a local subdivision, i.e., by subdivision which uses local
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refinement of the subdivision net, only. Moreover, they can be calculated
and stored in advance, since they do not depend on the number of refine~

ment steps and on the initial control net for h = 1. A more serious
shortcoming of the above method is an increased computational com­
plexity of the subdivision, caused by the necessity of performing the
convolution (5.1).

6. DISCUSSION

In this paper the notion of discrete multivariate simplex splines has been
introduced. We have shown that it fits naturally in the concepts of discrete
cube and cone splines. Moreover, some basic properties of the discrete
simplex splines have been derived, which are analogous to the ones in the
continuous case.

Discrete univariate B-splines on a uniform grid have first been intro­
duced by Schumaker [16J, as piecewise polynomial discrete functions. It is
worth noting that, in the univariate case, the splines defined here are not
identical with Schumaker's discrete B-splines. The difference is that, in
general, our discrete splines are not piecewise polynomial. A consequence of
this fact is a phenomenon called zig-zagging of the refined control net,
described in Section 5.

ACKNOWLEDGMENT

I thank the referee for a careful reading of the manuscript and his suggestions which
improved the final version of the paper.

REFERENCES

1. W. BOEHM, Subdividing multivariate splines, Comput. Aided Design 15 (1983), 345-352.
2. A. S. CAVARETTA AND C. A. MICHELLI, The design of curves and surfaces by subdivision

algorithms, in "Mathematical Methods in CAGD" (T. Lyche and L. L. Schumaker, Eds.),
pp. 115-153, Academic Press, Boston, 1987.

3. E. T. COHEN, T. LYCHE, AND R. RIESENFELD, Discrete box splines and refinement
algorithms, Comput. Aided Geom. Design 1 (1984), 131-148.

4. W. DAHMEN, Multivariate B-splines-Recurrence relations and linear combinations of
truncated powers, in "Multivariate Approximation Theory" (W. Schempp and K. Zeller,
Eds.), pp. 64-82, Birkhauser, Basel, 1979.

5. W. DAHMEN, On multivariate B-splines, SIAM J. Numer. Anal. 17 (1980), 179-191.
6. W. DAHMEN AND C. A. MICCHELLl, Recent progress in multivariate splines, in

"Approximation Theory, IV" (c. K. Chui, L. L. Schumaker, and J. D. Ward, Eds.),
pp. 27-121, Academic Press, New York, 1983.

7. W. DAHMEN AND C. A. MICCHELLl, Subdivision algorithms for the generation of box
spline surfaces, Comput. Aided Geom. Design 1 (1984), 115-129.



374 MARIAN NEAMTU

8. W. DAHMEN AND C. A. MICCHELLI, Line average algorithm: A method for the computer
generation of smooth surfaces, Comput. Aided Geom. Design 2 (1985), 77-85.

9. W. DAHMEN AND C. A. MICCHELLI, On the solution of certain systems of partial differen­
tial equations and linear dependence of translates of box splines, Trans. Amer. Math. Soc.
292 (1985), 305-320.

to. W. DAHMEN AND C. A. MICCHELLI, Algebraic properties of discrete box splines, Constr.
Approx. 3 (1987), 209-221.

11. W. DAHMEN AND C. A. MICCHELLI, The number of solutions to linear diophantine
equations and multivariate splines, Trans. Amer. Math. Soc. 308 (1988), 509-532.

12. P. KOCHEVAR, An application of multivariate B-splines to computer aided geometric
design, Rocky Mountain J. Math. 14 (1984), 159-175.

13. C. A. MICCHELLI, A constructive approach to Kergin interpolation in Rk : Multivariate
B-splines and Lagrange interpolation, Rocky Mountain J. Math. 10 (1980), 485-497.

14. H. PRAUTZSCH, "Unterteilungsalgorithmen fUr Multivariate Splines," Ph.D. thesis,
Technische Universitat Braunschweig, 1984.

15. M. SABIN, Open questions in the application of multivariate B-splines, in "Mathematical
Methods in CAGD" (T. Lyche and L. L. Schumaker, Eds.), pp. 529-537, Academic Press,
Boston, 1989.

16. L. L. SCHUMAKER, Constructive aspects of discrete polynomial spline functions, in
"Approximation Theory" (G. G. Lorentz, Ed.), pp.469-476, Academic Press, New York,
1973.


